What you'll learn
فهم أساسيات Python: هنتعلم الأساسيات في Python مثل المتغيرات، الحلقات، الدوال، والتعامل مع النصوص.
استخراج البيانات من الويب: هنتعلم كيفية استخدام مكتبات Python مثل BeautifulSoup و Selenium لاستخراج البيانات من صفحات الويب.
تحليل البيانات المستخرجة: تعلم كيفية معالجة وتحليل البيانات المستخرجة باستخدام المهارات الأساسية في Python.
التعامل مع HTML و XML: تعلم كيفية قراءة وتحليل بيانات HTML و XML لاستخراج المعلومات المطلوبة.
تطبيقات عملية: بناء مشاريع لاستخراج البيانات من مواقع متعددة مثل الأخبار والمتاجر الإلكترونية وتحليل هذه البيانات بشكل عملي.
What you'll learn
فهم أساسيات Python: هنتعلم الأساسيات في Python مثل المتغيرات، الحلقات، الدوال، والتعامل مع النصوص.
استخراج البيانات من الويب: هنتعلم كيفية استخدام مكتبات Python مثل BeautifulSoup و Selenium لاستخراج البيانات من صفحات الويب.
تحليل البيانات المستخرجة: تعلم كيفية معالجة وتحليل البيانات المستخرجة باستخدام المهارات الأساسية في Python.
التعامل مع HTML و XML: تعلم كيفية قراءة وتحليل بيانات HTML و XML لاستخراج المعلومات المطلوبة.
تطبيقات عملية: بناء مشاريع لاستخراج البيانات من مواقع متعددة مثل الأخبار والمتاجر الإلكترونية وتحليل هذه البيانات بشكل عملي.
دورة NLP هذه تأخذك من الأساسيات وصولًا إلى المواضيع المت... …
What you'll learn
مقدمة في NLP: تعلم الأساسيات مثل تعريف NLP وتطبيقاته، والتحديات التي قد تواجهها.
معالجة النصوص (Text Processing): تعلم Tokenization، Stop word removal، Stemming و Lemmatization.
تمثيل النصوص (Text Representation): تعلم كيفية استخدام TF-IDF، Word Embeddings و Bag of Words.
تصنيف النصوص (Text Classification): تعلم كيفية استخدام Logistic Regression و Naive Bayes لتصنيف النصوص.
تجميع النصوص وتحليل المواضيع (Clustering and Topic Modeling): تعلم تقنيات مثل LDA لتحليل المواضيع.
أنظمة التوصية (Recommendation Systems): تعلم كيفية بناء Content-based recommendation و Collaborative filtering.
نماذج التسلسل (Sequence Models): تعلم كيفية بناء RNN و LSTM و GRU لتحليل البيانات المتسلسلة.
نماذج الترجمة (Sequence-to-sequence models): تعلم كيفية استخدام Statistical Machine Translation و Neural Machine Translation.
النماذج التحويلية (Transformers): تعلم كيفية استخدام BERT و GPT في Question Answering Systems.
RAG: تعلم كيفية دمج retrieval و generation لتحسين الإجابات في question answering systems.
deploy النماذج (Deploy): تعلم كيفية deploy NLP models باستخدام Flask و Streamlit لإنشاء تطبيقات ويب تفاعلية يمكن استخدامها من قبل الآخرين.
What you'll learn
الـ Vectors (المتجهات): تعلم كيفية التعامل مع vectors كأدوات لتمثيل البيانات في الفضاءات متعددة الأبعاد.
المصفوفات (Matrices): فهم كيفية استخدام matrices لتنفيذ العمليات الحسابية المتعلقة بالبيانات، مثل multiplication و addition.
القيم الذاتية والمتجهات الذاتية (Eigenvalues and Eigenvectors): تعلم كيفية حساب eigenvalues و eigenvectors واستخدامها في تقنيات مثل PCA (Principal Component Analysis) لتقليل الأبعاد.
تحليل القيمة المنفردة (Singular Value Decomposition - SVD): تعلم كيفية استخدام SVD لتحليل المصفوفات وتطبيقاتها في dimensionality reduction و data compression.
نظرية بايز (Bayes Theorem): تعلم كيفية استخدام Bayes Theorem في التنبؤات والقرارات بناءً على البيانات المبدئية.
المتغيرات العشوائية (Random Variables): تعلم كيفية التعامل مع random variables التي تعبر عن النتائج المحتملة في التجارب العشوائية.
التوزيع الاحتمالي المنفصل (Discrete Probability Distribution): فهم التوزيعات الاحتمالية التي تحتوي على عدد محدود من القيم مثل Binomial Distribution و Poisson Distribution.
التوزيع الاحتمالي المستمر (Continuous Probability Distribution): تعلم التوزيعات الاحتمالية المستمرة مثل Normal Distribution و Exponential Distribution.
الإحصاء الوصفي (Descriptive Statistics): تعلم كيفية استخدام mean و median و variance و standard deviation لفهم وتلخيص البيانات.
What you'll learn
فهم أساسيات التعلم الآلي: هنتعرف على المفاهيم الأساسية للتعلم الآلي مثل الخوارزميات، والتدريب على البيانات، والاختبار.
التعرف على أنواع التعلم الآلي: هنتعلم الفرق بين التعلم supervised وunsupervised والتعلم المعزز.
بناء النماذج باستخدام Scikit-learn: تعلم كيفية بناء وتدريب النماذج باستخدام مكتبة Scikit-learn الشهيرة.
التعامل مع البيانات: هنتعلم كيفية تجهيز البيانات، تنظيفها، وتحليلها قبل تدريب النموذج.
تطبيقات عملية: بناء مشاريع حقيقية باستخدام تقنيات التعلم الآلي مثل تصنيف الصور، التنبؤ بالقيم، وتحليل البيانات.
What you'll learn
مفهوم التعلم العميق: فهم الأساسيات ودوره كأحد فروع تعلم الآلة.
الشبكات العصبية الاصطناعية: التعرف على كيفية محاكاة طريقة عمل الدماغ البشري لمعالجة البيانات.
بناء نموذج البرسيبترون (Perceptron): تعلم بناء أبسط أنواع الشبكات العصبية.
النماذج التوليدية (Generative Models): فهم كيفية تطبيق تقنيات مثل One-Hot Encoding.
تصميم نماذج فعالة: تطوير نماذج تعلم عميق قادرة على تحقيق نتائج دقيقة.
التعامل مع البيانات المعقدة: تعلم كيفية معالجة وتحليل البيانات لاستخدامها في النماذج العميقة.
تطبيقات الذكاء الاصطناعي: تطبيق التعلم العميق في مختلف المجالات لتحقيق حلول مبتكرة.
استخدام الشبكات العصبية: تطوير فهم عملي لبناء شبكات قوية للتنبؤ واتخاذ القرارات.
What you'll learn
فهم أساسيات رؤية الكمبيوتر: التعرف على معنى الصورة ومكوناتها وأساسيات معالجة الصور.
خطوات معالجة الصور: تعلم كيفية تطبيق خطوات معالجة الصور باستخدام تقنيات متعددة.
التعرف على تقنيات معالجة الصور: استكشاف الطرق المختلفة لمعالجة الصور وتطبيقاتها.
دمج رؤية الكمبيوتر والتعلم العميق: فهم كيفية تفاعل رؤية الكمبيوتر مع التعلم العميق لتطوير نماذج متقدمة.
تطبيق الرؤية ثلاثية الأبعاد: التعرف على تقنيات الرؤية ثلاثية الأبعاد واستخدامها في تحسين النماذج الذكية.
تطوير مهارات تحليل الصور: اكتساب القدرة على تحليل الصور وحل مشكلات حقيقية باستخدام أدوات حديثة.
استخدام تقنيات الذكاء الاصطناعي في رؤية الكمبيوتر: تطبيق تقنيات الذكاء الاصطناعي لتحسين الأداء في معالجة الصور.
إنشاء نماذج ذكية أكثر تطوراً: تعلم كيفية بناء نماذج رؤية الكمبيوتر التي تلبي متطلبات التطبيقات المتقدمة.
اكتساب مهارات عملية: التعرف على أدوات وتطبيقات عملية لتطوير حلول مبتكرة في رؤية الكمبيوتر.
التعامل مع بيانات الصور: تعلم كيفية تحليل وتفسير الصور في سياقات متعددة.
What you'll learn
فهم التعلم العميق ومعالجة اللغة الطبيعية: التعرف على مفهوم التعلم العميق وتطبيقاته في معالجة النصوص.
معالجة النصوص وتحويلها إلى بيانات رقمية: تعلم خطوات تحويل النصوص إلى أرقام واتجاهات تفهمها الآلة.
تطبيق النماذج المولدة (Generative Models): استكشاف نماذج مثل LAMA وChatGPT وفهم طريقة عملها.
التعامل مع النماذج اللغوية الكبيرة (Large Language Models): التعرف على كيفية استخدام هذه النماذج في التطبيقات العملية.
بناء تطبيقات معالجة اللغة الطبيعية: تطوير حلول مبتكرة لمعالجة النصوص والترجمة الآلية وإنشاء المحتوى.
تحليل البيانات النصية باستخدام التعلم العميق: تطبيق تقنيات الذكاء الاصطناعي لتحليل النصوص وفهم البيانات النصية.
التفاعل مع النماذج التوليدية: اكتساب مهارات إنشاء محتوى توليدي باستخدام نماذج اللغة المتقدمة.
دمج تقنيات الذكاء الاصطناعي في التطبيقات العملية: فهم كيفية استخدام التعلم العميق لتطوير حلول ذكية.
استخدام التقنيات الحديثة في الذكاء الاصطناعي: تعلم كيفية التعامل مع أحدث تقنيات الذكاء الاصطناعي وتطبيقاتها.
تحليل وتطبيق النماذج اللغوية في مختلف المجالات: استخدام النماذج المتطورة لحل مشكلات معقدة في المجالات المتعددة.