What you'll learn
فهم الـ data structures الأساسية: تعلم كيفية تمثيل البيانات باستخدام data structures مثل lists، stacks، queues، و trees.
التعامل مع الـ hash tables: تعلم كيفية تنظيم البيانات في hash tables للحصول على الوصول السريع.
أنواع الأشجار (Trees): دراسة binary trees، binary search trees، و balanced trees وكيفية التعامل معها.
تحليل الأداء: تعلم كيفية تحليل تعقيد الوقت والذاكرة للعمليات المختلفة على data structures باستخدام الـ Big-O Notation.
ربط الـ data structures بالخوارزميات: تعلم كيف يمكن استخدام data structures لتحسين أداء algorithms في معالجة البيانات.
What you'll learn
فهم الخوارزميات الأساسية: تعلم كيفية تصميم وتنفيذ خوارزميات لحل المشكلات المختلفة.
أنواع الفرز (Sorting): دراسة الخوارزميات المختلفة لفرز البيانات وكيفية اختيار الأنسب حسب حالة البيانات.
خوارزميات البحث (Searching): تعلم تقنيات البحث المختلفة مثل البحث الثنائي والبحث الخطّي.
الأشجار (Trees): تعلم كيفية تمثيل البيانات باستخدام الأشجار، ودراسة الأنواع المختلفة للأشجار مثل الأشجار الثنائية وأشجار البحث.
تحليل الأداء: فهم كيفية تحليل تعقيد الخوارزميات باستخدام الـ Big-O ومقارنة كفاءتها.
What you'll learn
قدمة في NLP: تعلم الأساسيات المتعلقة بـ Natural Language Processing وكيفية التعامل مع النصوص باستخدام الخوارزميات المناسبة.
مقدمة في Hugging Face: استكشاف مكتبة Hugging Face وأدواتها الأساسية مثل Transformers و Datasets.
استخدام البيانات وmodels: تعلم كيفية الوصول إلى datasets و pre-trained models من مكتبة Hugging Face واستخدامها في مشاريعك.
التدريب علىmodels: تعلم كيفية تدريب models باستخدام أدوات Hugging Face وتطبيقها على مجموعة متنوعة من مهام NLP.
مشروع تطبيقي: تطبيق ما تعلمته في مشروع حقيقي باستخدام Hugging Face لبناء وتدريب NLP models على بيانات حقيقية.
What you'll learn
تنظيف البيانات: تعلم كيفية التعامل مع missing values (القيم المفقودة)، outliers (القيم الغريبة)، و duplicates (البيانات المكررة).
معالجة البيانات: تعلم كيفية استخدام تقنيات مثل Normalization، Standardization، و Scaling لتحويل البيانات وتوحيدها.
التحليل الاستكشافي للبيانات (EDA): تعلم كيفية استكشاف البيانات باستخدام statistical summaries و visualizations.
تصور البيانات (Data Visualization): تعلم كيفية استخدام Matplotlib و Seaborn لإنشاء الرسوم البيانية التي تساعد في فهم البيانات.
استخراج الميزات (Feature Extraction): تعلم كيفية اختيار الميزات الأكثر تأثيرًا والملائمة لبناء models دقيقة.
What you'll learn
تنظيف البيانات: تعلم كيفية التعامل مع missing values (القيم المفقودة)، outliers (القيم الغريبة)، و duplicates (البيانات المكررة).
معالجة البيانات: تعلم كيفية استخدام تقنيات مثل Normalization، Standardization، و Scaling لتحويل البيانات وتوحيدها.
التحليل الاستكشافي للبيانات (EDA): تعلم كيفية استكشاف البيانات باستخدام statistical summaries و visualizations.
تصور البيانات (Data Visualization): تعلم كيفية استخدام Matplotlib و Seaborn لإنشاء الرسوم البيانية التي تساعد في فهم البيانات.
استخراج الميزات (Feature Extraction): تعلم كيفية اختيار الميزات الأكثر تأثيرًا والملائمة لبناء models دقيقة.
- 1
- 2