What you'll learn
ماذا سوف أتعلم؟
مقدمة إلى Excel: فهم واجهة Excel واستخدام العملات و الأوراق.
إدخال البيانات والتنسيق: تعلم كيفية تنسيق الخلايا، إضافة بيانات، وتحريرها.
استخدام الدوال الأساسية: التعرف على الدوال الشائعة مثل SUM، AVERAGE، و COUNT.
إنشاء الرسوم البيانية: تعلم كيفية إنشاء الرسوم البيانية مثل Bar و Pie و Column، وتخصيصها.
التنظيم المتقدم للبيانات: استخدام Pivot Tables و Pivot Charts لتحليل البيانات المتقدمة.
التخصيص باستخدام ماكرو: تعلم كيفية تسجيل وتشغيل Macros لأتمتة المهام المتكررة.
تحليل البيانات المتقدم: استخدام What-If Analysis، Goal Seek، و Trend Analysis لتحليل البيانات المتقدمة.
What you'll learn
التعرف على Power BI: تعلم الأدوات والوظائف المختلفة في Power BI.
جمع البيانات: تعلم كيفية جمع البيانات من مصادر متعددة مثل Excel، SQL Server، و web.
إنشاء التقارير: تعلم كيفية إنشاء reports باستخدام Power BI Desktop.
التصور المرئي: تعلم كيفية إنشاء interactive visualizations مثل الرسوم البيانية، الجداول، والمخططات.
التعامل مع البيانات: تعلم كيفية تنظيف البيانات باستخدام Power Query، وإنشاء العلاقات بين الجداول.
تخصيص التقارير: تعلم كيفية تخصيص التقارير بناءً على احتياجات المستخدمين.
What you'll learn
بناء models: تعلم كيفية بناء models باستخدام Supervised Learning و Unsupervised Learning.
فهم الأساسيات: تعلم الأساسيات وفهم Machine Learning وكيفية استخدامه لحل المشكلات المعقدة.
التعلم من البيانات: تعلم كيفية التعامل مع البيانات وتنظيفها وتجهيزها لبناء models دقيقة.
تحليل البيانات وتصورها: تعلم كيفية تحليل البيانات واستخراج الأنماط باستخدام تقنيات مثل Exploratory Data Analysis (EDA) و Data Visualization.
تطبيق تقنيات التحسين: تعلم كيفية تحسين models باستخدام تقنيات مثل cross-validation و hyperparameter tuning.
What you'll learn
فهم المفاهيم الأساسية في Deep Learning.
بناء وتدريب أول شبكة عصبية (Perceptron, Feed Forward Network).
التعامل مع مكتبات TensorFlow و PyTorch.
فهم خوارزميات Backpropagation وطرق التحسين (Optimizers).
بناء AutoEncoder و Variational AutoEncoder (VAE).
تصميم وتدريب Generative Adversarial Networks (GANs).
تطبيق عملي على بيانات حقيقية وتحليل نتائج الـ models.
What you'll learn
التعرف على واجهة Excel: تعلم كيفية التنقل في Excel واستخدام الوظائف الأساسية.
العمل مع البيانات: تعلم كيفية إدخال وتنظيم البيانات، وكيفية استخدام filters و sorting.
استخدام الصيغ (Formulas): تعلم كيفية استخدام SUM، AVERAGE، VLOOKUP، و IF، بالإضافة إلى الصيغ المتقدمة مثل INDEX و MATCH.
التنسيق الشرطي (Conditional Formatting): تعلم كيفية تطبيق conditional formatting لجعل البيانات أكثر وضوحًا.
إنشاء الرسوم البيانية (Charts): تعلم كيفية إنشاء الرسوم البيانية مثل bar charts، line charts، و pie charts لعرض البيانات بطريقة مرئية.
التحليل المتقدم: تعلم كيفية استخدام Pivot Tables و Pivot Charts لتحليل البيانات الكبيرة.
دورة Math for Machine Learning تهدف إلى تعليم الأساسيات ... …
What you'll learn
الـ Vectors (المتجهات): تعلم كيفية التعامل مع vectors كأدوات لتمثيل البيانات في الفضاءات متعددة الأبعاد.
المصفوفات (Matrices): فهم كيفية استخدام matrices لتنفيذ العمليات الحسابية المتعلقة بالبيانات، مثل multiplication و addition.
القيم الذاتية والمتجهات الذاتية (Eigenvalues and Eigenvectors): تعلم كيفية حساب eigenvalues و eigenvectors واستخدامها في تقنيات مثل PCA (Principal Component Analysis) لتقليل الأبعاد.
تحليل القيمة المنفردة (Singular Value Decomposition - SVD): تعلم كيفية استخدام SVD لتحليل المصفوفات وتطبيقاتها في dimensionality reduction و data compression.
نظرية بايز (Bayes Theorem): تعلم كيفية استخدام Bayes Theorem في التنبؤات والقرارات بناءً على البيانات المبدئية.
المتغيرات العشوائية (Random Variables): تعلم كيفية التعامل مع random variables التي تعبر عن النتائج المحتملة في التجارب العشوائية.
التوزيع الاحتمالي المنفصل (Discrete Probability Distribution): فهم التوزيعات الاحتمالية التي تحتوي على عدد محدود من القيم مثل Binomial Distribution و Poisson Distribution.
التوزيع الاحتمالي المستمر (Continuous Probability Distribution): تعلم التوزيعات الاحتمالية المستمرة مثل Normal Distribution و Exponential Distribution.
الإحصاء الوصفي (Descriptive Statistics): تعلم كيفية استخدام mean و median و variance و standard deviation لفهم وتلخيص البيانات.
What you'll learn
فهم أساسيات Python: هنتعلم الأساسيات في Python مثل المتغيرات، الحلقات، الدوال، والتعامل مع النصوص.
استخراج البيانات من الويب: هنتعلم كيفية استخدام مكتبات Python مثل BeautifulSoup و Selenium لاستخراج البيانات من صفحات الويب.
تحليل البيانات المستخرجة: تعلم كيفية معالجة وتحليل البيانات المستخرجة باستخدام المهارات الأساسية في Python.
التعامل مع HTML و XML: تعلم كيفية قراءة وتحليل بيانات HTML و XML لاستخراج المعلومات المطلوبة.
تطبيقات عملية: بناء مشاريع لاستخراج البيانات من مواقع متعددة مثل الأخبار والمتاجر الإلكترونية وتحليل هذه البيانات بشكل عملي
What you'll learn
فهم أساسيات التعلم الآلي: هنتعرف على المفاهيم الأساسية للتعلم الآلي مثل الخوارزميات، والتدريب على البيانات، والاختبار.
التعرف على أنواع التعلم الآلي: هنتعلم الفرق بين التعلم supervised وunsupervised والتعلم المعزز.
بناء النماذج باستخدام Scikit-learn: تعلم كيفية بناء وتدريب النماذج باستخدام مكتبة Scikit-learn الشهيرة.
التعامل مع البيانات: هنتعلم كيفية تجهيز البيانات، تنظيفها، وتحليلها قبل تدريب النموذج.
تطبيقات عملية: بناء مشاريع حقيقية باستخدام تقنيات التعلم الآلي مثل تصنيف الصور، التنبؤ بالقيم، وتحليل البيانات.