مقدمة في الصور الرقمية:
ما هي الصورة (Image) وكيف يتم تمثيلها عدديًا (Pixels, Channels, Color Spaces).
المفاهيم الأساسية مثل Resolution، Histogram، و Noise.
Image Processing:
العمليات الأساسية مثل Filtering، Thresholding، Edge Detection.
تقنيات تحسين الصور (Image Enhancement) واستخراج الملامح (Feature Extraction).
تحويلات هندسية (Scaling, Rotation, Affine Transformations).
Deep Learning for Computer Vision:
مدخل إلى DNN (Deep Neural Networks) وأسس عملها.
الشبكات الالتفافية CNN (Convolutional Neural Networks) ودورها في تحليل الصور.
Transfer Learning: الاستفادة من النماذج الجاهزة وتخصيصها لتطبيقات جديدة.
Data Augmentation: تحسين أداء النماذج عبر توليد بيانات إضافية.
المهام الأساسية في Computer Vision:
Object Detection: اكتشاف الأجسام باستخدام نماذج مثل YOLO و Faster R-CNN.
Object Tracking: تتبع الأجسام عبر الفيديو باستخدام خوارزميات كلاسيكية وحديثة.
Image Classification & Recognition: تصنيف الصور والتعرف على الكائنات والوجوه.
Semantic Segmentation: تقسيم الصور إلى مكوّناتها الدلالية.
المستوى المتقدم:
3D Reconstruction: إعادة بناء الأجسام والمشاهد ثلاثية الأبعاد من صور ثنائية.