الأكثر شهرة
تتجه
وجدنا 17 الدورات متاح لك
نرى
مجانا

Deep Learning Fundamentals

22 دروس
10.2 ساعات
مبتدئ

بدأ رحلتك في فهم وبناء Neural Networks خطوة بخطوةفي الكو... …

What you'll learn
أساسيات Neural Networks وPerceptron.
أنواع Activation Functions ودورها في التعلم.
خوارزميات Backpropagation وweights update .
التعرف على أنواع Optimizers المختلفة وتحليل أدائها.
التعامل مع Deep Learning Frameworks زي TensorFlow وKeras.
بناء شبكات عصبية للتصنيف (Classification) والانحدار (Regression).
تطبيق عملي على بيانات حقيقية باستخدام TensorFlow.
مجانا

Introduction to CV

31 دروس
15 ساعات
مبتدئ

دورة “مقدمة في الرؤية الحاسوبية” هتأخذك في ر... …

What you'll learn
فهم أساسيات رؤية الكمبيوتر: التعرف على معنى الصورة ومكوناتها وأساسيات معالجة الصور.
خطوات معالجة الصور: تعلم كيفية تطبيق خطوات معالجة الصور باستخدام تقنيات متعددة.
التعرف على تقنيات معالجة الصور: استكشاف الطرق المختلفة لمعالجة الصور وتطبيقاتها.
دمج رؤية الكمبيوتر والتعلم العميق: فهم كيفية تفاعل رؤية الكمبيوتر مع التعلم العميق لتطوير نماذج متقدمة.
تطبيق الرؤية ثلاثية الأبعاد: التعرف على تقنيات الرؤية ثلاثية الأبعاد واستخدامها في تحسين النماذج الذكية.
تطوير مهارات تحليل الصور: اكتساب القدرة على تحليل الصور وحل مشكلات حقيقية باستخدام أدوات حديثة.
استخدام تقنيات الذكاء الاصطناعي في رؤية الكمبيوتر: تطبيق تقنيات الذكاء الاصطناعي لتحسين الأداء في معالجة الصور.
إنشاء نماذج ذكية أكثر تطوراً: تعلم كيفية بناء نماذج رؤية الكمبيوتر التي تلبي متطلبات التطبيقات المتقدمة.
اكتساب مهارات عملية: التعرف على أدوات وتطبيقات عملية لتطوير حلول مبتكرة في رؤية الكمبيوتر.
التعامل مع بيانات الصور: تعلم كيفية تحليل وتفسير الصور في سياقات متعددة.
مجانا

Introduction to NLP

18 دروس
8.8 ساعات
مبتدئ

يقدّم هذا الكورس مدخلًا متكاملًا إلى مجال معالجة اللغة ا... …

What you'll learn
فهم مفهوم Natural Language Processing (NLP) وأهميته في تطبيقات الذكاء الاصطناعي
التعرف على مراحل Text Processing وتنظيف النصوص وتجهيزها
تطبيق Sentiment Analysis وتحليل المشاعر على النصوص
فهم Feature Engineering في النصوص
تحويل النصوص إلى تمثيل عددي باستخدام:
Vectorization
Term Frequency
Word Embeddings
التعرف على نماذج معالجة السلاسل النصية:
RNN
LSTM
GRU
تنفيذ تطبيقات عملية باستخدام Python
الاستعداد للانتقال إلى المراحل المتقدمة في NLP وDeep Learning
مجانا

Mastering NLP: From Text Processing to Gen AI

91 دروس
48.8 ساعات
جميع المستويات

دورة شاملة تأخذك منهجيًا من أسس Text Processing وبناء خط... …

What you'll learn
مقدمة في NLP: تعلم الأساسيات مثل تعريف NLP وتطبيقاته، والتحديات التي قد تواجهها.
معالجة النصوص (Text Processing): تعلم Tokenization، Stop word removal، Stemming و Lemmatization.
تمثيل النصوص (Text Representation): تعلم كيفية استخدام TF-IDF، Word Embeddings و Bag of Words.
تصنيف النصوص (Text Classification): تعلم كيفية استخدام Logistic Regression و Naive Bayes لتصنيف النصوص.
تجميع النصوص وتحليل المواضيع (Clustering and Topic Modeling): تعلم تقنيات مثل LDA لتحليل المواضيع.
أنظمة التوصية (Recommendation Systems): تعلم كيفية بناء Content-based recommendation و Collaborative filtering.
نماذج التسلسل (Sequence Models): تعلم كيفية بناء RNN و LSTM و GRU لتحليل البيانات المتسلسلة.
نماذج الترجمة (Sequence-to-sequence models): تعلم كيفية استخدام Statistical Machine Translation و Neural Machine Translation.
النماذج التحويلية (Transformers): تعلم كيفية استخدام BERT و GPT في Question Answering Systems.
RAG: تعلم كيفية دمج retrieval و generation لتحسين الإجابات في question answering systems.
deploy النماذج (Deploy): تعلم كيفية deploy NLP models باستخدام Flask و Streamlit لإنشاء تطبيقات ويب تفاعلية يمكن استخدامها من قبل الآخرين.
مجانا

Computer Vision Mastery: From Fundamentals to 3D Reconstruction

68 دروس
16.5 ساعات
جميع المستويات

تقدّم هذه الدورة رحلة شاملة في مجال Computer Vision، تبد... …

What you'll learn
مقدمة في الصور الرقمية:
ما هي الصورة (Image) وكيف يتم تمثيلها عدديًا (Pixels, Channels, Color Spaces).
المفاهيم الأساسية مثل Resolution، Histogram، و Noise.
Image Processing:
العمليات الأساسية مثل Filtering، Thresholding، Edge Detection.
تقنيات تحسين الصور (Image Enhancement) واستخراج الملامح (Feature Extraction).
تحويلات هندسية (Scaling, Rotation, Affine Transformations).
Deep Learning for Computer Vision:
مدخل إلى DNN (Deep Neural Networks) وأسس عملها.
الشبكات الالتفافية CNN (Convolutional Neural Networks) ودورها في تحليل الصور.
Transfer Learning: الاستفادة من النماذج الجاهزة وتخصيصها لتطبيقات جديدة.
Data Augmentation: تحسين أداء النماذج عبر توليد بيانات إضافية.
المهام الأساسية في Computer Vision:
Object Detection: اكتشاف الأجسام باستخدام نماذج مثل YOLO و Faster R-CNN.
Object Tracking: تتبع الأجسام عبر الفيديو باستخدام خوارزميات كلاسيكية وحديثة.
Image Classification & Recognition: تصنيف الصور والتعرف على الكائنات والوجوه.
Semantic Segmentation: تقسيم الصور إلى مكوّناتها الدلالية.
المستوى المتقدم:
3D Reconstruction: إعادة بناء الأجسام والمشاهد ثلاثية الأبعاد من صور ثنائية.
مجانا

Mastering Computer Vision: From Image Processing to 3D Reconstruction

91 دروس
54.5 ساعات
جميع المستويات

تقدّم هذه الدورة رحلة شاملة في مجال Computer Vision، تبد... …

What you'll learn
مقدمة في الصور الرقمية:
ما هي الصورة (Image) وكيف يتم تمثيلها عدديًا (Pixels, Channels, Color Spaces).
المفاهيم الأساسية مثل Resolution، Histogram، و Noise.
Image Processing:
العمليات الأساسية مثل Filtering، Thresholding، Edge Detection.
تقنيات تحسين الصور (Image Enhancement) واستخراج الملامح (Feature Extraction).
تحويلات هندسية (Scaling, Rotation, Affine Transformations).
Deep Learning for Computer Vision:
مدخل إلى DNN (Deep Neural Networks) وأسس عملها.
الشبكات الالتفافية CNN (Convolutional Neural Networks) ودورها في تحليل الصور.
Transfer Learning: الاستفادة من النماذج الجاهزة وتخصيصها لتطبيقات جديدة.
Data Augmentation: تحسين أداء النماذج عبر توليد بيانات إضافية.
المهام الأساسية في Computer Vision:
Object Detection: اكتشاف الأجسام باستخدام نماذج مثل YOLO و Faster R-CNN.
Object Tracking: تتبع الأجسام عبر الفيديو باستخدام خوارزميات كلاسيكية وحديثة.
Image Classification & Recognition: تصنيف الصور والتعرف على الكائنات والوجوه.
Semantic Segmentation: تقسيم الصور إلى مكوّناتها الدلالية.
المستوى المتقدم:
3D Reconstruction: إعادة بناء الأجسام والمشاهد ثلاثية الأبعاد من صور ثنائية.
مجانا

Math For Machine Learnig

20 دروس
2.1 ساعات
مبتدئ

دورة Math for Machine Learning تهدف إلى تعليم الأساسيات ... …

What you'll learn
الـ Vectors (المتجهات): تعلم كيفية التعامل مع vectors كأدوات لتمثيل البيانات في الفضاءات متعددة الأبعاد.
المصفوفات (Matrices): فهم كيفية استخدام matrices لتنفيذ العمليات الحسابية المتعلقة بالبيانات، مثل multiplication و addition.
القيم الذاتية والمتجهات الذاتية (Eigenvalues and Eigenvectors): تعلم كيفية حساب eigenvalues و eigenvectors واستخدامها في تقنيات مثل PCA (Principal Component Analysis) لتقليل الأبعاد.
تحليل القيمة المنفردة (Singular Value Decomposition - SVD): تعلم كيفية استخدام SVD لتحليل المصفوفات وتطبيقاتها في dimensionality reduction و data compression.
نظرية بايز (Bayes Theorem): تعلم كيفية استخدام Bayes Theorem في التنبؤات والقرارات بناءً على البيانات المبدئية.
المتغيرات العشوائية (Random Variables): تعلم كيفية التعامل مع random variables التي تعبر عن النتائج المحتملة في التجارب العشوائية.
التوزيع الاحتمالي المنفصل (Discrete Probability Distribution): فهم التوزيعات الاحتمالية التي تحتوي على عدد محدود من القيم مثل Binomial Distribution و Poisson Distribution.
التوزيع الاحتمالي المستمر (Continuous Probability Distribution): تعلم التوزيعات الاحتمالية المستمرة مثل Normal Distribution و Exponential Distribution.
الإحصاء الوصفي (Descriptive Statistics): تعلم كيفية استخدام mean و median و variance و standard deviation لفهم وتلخيص البيانات.
مجانا

Hugging Face

4 دروس
1.4 ساعة
جميع المستويات

دورة Hugging Face تهدف إلى تقديم مقدمة شاملة حول Natural... …

What you'll learn
قدمة في NLP: تعلم الأساسيات المتعلقة بـ Natural Language Processing وكيفية التعامل مع النصوص باستخدام الخوارزميات المناسبة.
مقدمة في Hugging Face: استكشاف مكتبة Hugging Face وأدواتها الأساسية مثل Transformers و Datasets.
استخدام البيانات وmodels: تعلم كيفية الوصول إلى datasets و pre-trained models من مكتبة Hugging Face واستخدامها في مشاريعك.
التدريب علىmodels: تعلم كيفية تدريب models باستخدام أدوات Hugging Face وتطبيقها على مجموعة متنوعة من مهام NLP.
مشروع تطبيقي: تطبيق ما تعلمته في مشروع حقيقي باستخدام Hugging Face لبناء وتدريب NLP models على بيانات حقيقية.